
POSTER 2006, PRAGUE MAY 18 1

Generation of Digital System Test Patterns Based on
VHDL Simulations

Miljana SOKOLOVIĆ1, Andy KUIPER2

1 LEDA laboratory, Faculty of Electronic Engineering, University of Niš, Aleksandra Medvedeva 14, 18000 Niš, Serbia &
Montenegro

2 Dept. of Radioelectronics, Brno University of Technology, Purkynova 118, 61200 Brno, Czech Republic

miljana@venus.elfak.ni.ac.yu, xkuipe00@stud.feec.vutbr.cz

Abstract. In this paper an approach for test pattern
generation and verification for a digital system-on-chip is
proposed. It is based on digital system simulation using a
standard VHDL simulator and on an additional program
in MATLAB, that generates minimal test set for covering
all stuck-at defects in the circuit. The approach is verified
for two large arithmetic blocks which are parts of an
integrated power-meter and represent large combinational
digital systems. This approach is very useful because it can
offer automatic minimal test set generation for a particular
circuit, and speed up the IC design and testing process,
which are essential for nowadays IC industry.

Keywords
Testing, VHDL, stuck-at fault, minimal test set

1. Introduction
Integrated Circuit (IC) fabrication process consists of

many different steps such as photolithographic printing,
etching, doping, implanting, masking and chemical vapor
depositioning. After carrying out these steps, a complete IC
is obtained. IC surfaces are exaggerated in diagrams in
order to distinguish between different layers of oxide,
polysilicon and metal. On the contrary, in reality, they are
not at all flat. Even with exaggerations, the diagrams
represent an idealized approximation of actual fabricated
circuit structures [1]. The actual circuit structures are not
nearly as well defined as textbook diagrams would lead
one to believe. Cross sections of real integrated circuit
expose a variety of nonideal physical characteristics that
are not entirely under the semiconductor manufacturer’s
control. Thus, no fabrication process can be perfect and
free of defects.

One real digital integrated systems can have a variety
of defects. By testing them, a manufacturer can easily
separate good and bad ICs. The IC quality is improved by
testing since defective devices are not shipped to market.

IC testing is a very expensive activity because an IC does
not get any additional value.

Testing is an activity that presents the comparison of
the fault free (ff) circuit response with the one obtained
from the observed circuit, CUT (Circuit Under Test). There
are two general concepts for testing approach: functional
and structural testing. Verification that the circuit satisfies
all required functions is referred to as functional testing.
For combinational digital circuits this is a very
uninteresting and time consuming process, because all
possible combinations of input patterns must be applied to
the circuit inputs in order to make sure that its function is
correct. It is also very difficult to apply this to circuits with
a large number of inputs.

The structural testing is on the otherhand, defect-
oriented. Instead of checking if the circuit functions
correctly, the test here searches for defects. The aim of
such testing is to determine a test signal that will ensure
that the responses of the ff circuit and the faulty one are
different. The algorithm for test signal generation based on
this approach is shown in Fig. 1.

Prepare the list of the defects
For each defect from the list

{
 Select the next defect from the list of defects;
 Generate the test for the selected defect;

For all other elements from the defects’ list
{

Remove those (defects) that are covered
with the generated test;

 }
}

__
Fig. 1. The algorithm for test signal generation based on the

structural testing concept

Generating a test signal that will cover every possible
defect in the circuit is a very complex job, especially in an
industrial environment. Thus, it is necessary to avoid
having a list of all theoretically possible defects and create
a list of defects that is both short and realistic.

2 M. SOKOLOVIĆ, A. KUIPER, GENERATION OF DIGITAL SYSTEM TEST PATTERNS BASED ON VHDL SIMULATIONS

It is impossible to perform structural testing at a high
level of design abstraction. Thus the HDL description of
the system must be loaded into the synthesis tool, then the
synthesis must be performed, and after that the real netlist
of the system with the actual gates and connections
between them can be obtained.

This paper presents a VHDL-based approach for
minimal test set generation for large digital combinational
systems. This approach assumes that the synthesis of the
system has already been performed and that the post
synthesis netlist is available. Only in that way one can deal
defects at the gate level of abstraction.

The paper is organized as follows. In the first section
faults and defect issues are discussed. Some basic
principles of digital systems testing are given in the second
section. After that the steps in the digital system design are
explained. In one of those steps, ff gates are replaced with
faulty ones. Then the general approach of test pattern
generation is given. The section after that, gives the
principles of modeling faulty combinational gates. This
approach is applied to two examples of large combinational
arithmetical circuits which are parts of the power-meter IC.
These examples and the obtained results are presented in
the last section.

2. Faults in Digital Circuits
Physical causes of faults are called defects. Defects in

most cases consist of missing or an extra material, or of an
impurity. Such defects at the layout level of the chip are
translated into electrical faults and then into logical faults,
such that they can be tested with logical signals. A fault is
a model of behavior due to the defect or it can be defined
as an abstract model of the defect.

Faults can be single and structural. Single faults are
related to fan-out issues, i.e. stems and branches. On the
other hand, structural faults are related to interconnections
and components. Interconnect faults are stuck-at faults,
bridging (short) and open (break) faults. Component
(transistor) faults are divided into stuck-open and stuck-
short faults.

To make the test pattern generation easier, some
assumptions about faults and physical defects must be
made [3]. Mapping of defects into electrical, and thereafter
into logical faults is called fault modeling. The principle of
fault modeling is to reduce the number of effects to be
tested by considering how defects manifest themselves.
About 50% of faults that appear during tests in
manufacturing are static faults. They are modeled with a
single stuck-at fault model. According to this model a fault
at one node is represented as either stuck at high level, that
is 1, or low voltage level, that is 0.

This kind of modeling has many advantages of. First,
it can represent many physical faults. It is independent of
technology, as shown in Fig. 3. Multiple faults also appear
in digital circuits. But their relative probability of

appearing is much lower. Most test pattern generation is
based on single stuck-at faults, because detecting single
stuck-at faults also detects many other types of faults. This
kind of modeling significantly reduces the test size to a
reasonable value. For an n-net circuit it gives
approximately 2n faults. This representation can also be
used to model other digital circuit faults.

Examples of defects modeled by stuck-at faults for
different technologies are shown in Fig. 3.

Fig. 3. Examples of static defects in logic gates; a) XOR BJT gate

b) CMOS inverter

3. Digital Circuit Testing Principles
The main aim here is to generate a test for a selected

defect. This is the most important and the most difficult
issue in the algorithm shown in Fig. 1 [2]. One test can be
used for detecting a certain defect, only if it can ensure
controllability and observability.

Controllability is the ability of the test to force a state
at the defect node different to the state caused by the
defect. Observability, on the other hand, is the ability of the
test to force the effect of the defect to at least one output of
the circuit.

X

X
G

X

X

1

2

i

n

F

F

F

F

1

2

j

m

Fig. 4. The combinational circuit for the testing problem

formulation

For the circuit shown in Fig. 4, n inputs are denoted
with a vector X=[X1, X2, ... Xi, ... , Xn]; m outputs are
denoted with a vector F=[F1, F2, ... Fj, ... , Fm]. Assume that
it is necessary to create a test for the stuck-at fault at the
node G, which is here denoted as G/s. The state at node G,
can be expressed as the function of the input vector. The
test must satisfy two requirements expressed by the
following equations.

sXG =)((1)

POSTER 2006, PRAGUE MAY 18 3

and,

1),0(),1(=⊕= XFXF jj . (2)

These two equations present controllability and
observability conditions. If at least one of these two
conditions is not satisfied, the defect is not testable in this
way, and it has to be detected using some other approach
(for example IDDQ).

4. Digital System Design Flow
It is almost impossible to generate a structural test

sequence for the VHDL behavioral description of a digital
circuit. The description itself does not contain any
information about the logic gates that will implement the
design after synthesis. Because of that, in order to get the
final testable post-synthesis netlist of the circuit, it is
necessary to go through all digital circuit design steps. For
this purpose the Cadence system can be used [3].

The design flow of an ASIC begins with simulation
of the RTL (Register Transfer Level) description of the
design in VHDL in order to verify the circuit’s
functionality. This simulation can be performed using a
standard VHDL simulator Active HDL. The next process is
logic synthesis where a netlist of components and their
connections is obtained. Initial and final timing analysis
can be done after this step. The tool for logic synthesis
takes a VHDL description of the design and appropriate
technology libraries and generates a standard cell netlist.
That netlist is imported into another tool to perform
floorplanning, cell placement and routing. The obtained
layout is verified at the end. Back annotation based on the
extracted parasitics from the layout can be performed for
more accurate timing analysis.

After these steps, a netlist of the circuit containing all
actual library logic gates and their connections is available.
For this netlist it is now reasonable to create a defect
oriented test and to perform an estimation of the defect
coverage.

In this way two arithmetic blocks’ netlists of interest
were extracted. They were: a 24-bit combinational
subtraction unit and a 48-bit addition-subtracting circuit.

5. The Approach of Minimal Test
Pattern Generation

In order to perform minimal test set generation (MTS)
it is necessary to have a post-synthesis netlist of the circuit,
and models of the faulty library elements used during the
synthesis phase. One of the important steps in this process
is to determine the fault coverage of the proposed test
sequence.

Postsynthesis
netlist

Faulty
gate

models

Netlist
modification

Simulation
(estimation)

Test pattern
generation

MTS
generation

Fig. 5. The test pattern verification approach

The approach is shown in Fig. 5. First, the library
logic gates used in the synthesis must be available in the
VHDL netlist. Every logic gate must be modeled with all
possible stuck-at defects. The modeling of the faulty gates
will be explained later. The ff gates are then replaced in the
netlist with the faulty ones. For a specified test sequences,
the modified netlist is then simulated (using VHDL) for
each of the defects specified in each logic gate. This
simulation at the same time performs an estimation of the
fault coverage. In this way we determine how many and
which faults are left undetected with the proposed test
sequence. Based on the results of the VHDL simulations,
the special Matlab program performs MTS extraction. In
this way it is possible to achieve 100% fault coverage.

5.1 Modeling Faulty Library Logic Gates
Modeling of faulty gates here assumes the stuck-at

faults models of the gates and devices are incorporated into
their VHDL descriptions [4, 5]. For testing the arithmetic
circuits of interest, VHDL descriptions of faulty models for
an inverter (inv), two input OR gate (OR2_fault), NXOR
gate (EN_fault), and full adder (FA_fault), should be
available. The 24-bit subtraction block and the 48-bit
addition-subtraction circuit are shown in Fig. 6, while the
modified library cells are shown in Fig. 7.

a (47:0)

m (47:0)
res (47:0)

sel

a (23:0)

b (23:0)

cout

dif (23:0)

Fig. 6. Block diagrams of the observed combinational circuits:

addition-subtraction and subtraction

inv

OR2

NXOR

FA_fault

a-sa-0
a-sa-1

z-sa-0
z-sa-1

a-sa-0
a-sa-1 z-sa-0

z-sa-1b-sa-0
b-sa-1

a-sa-0
a-sa-1 z-sa-0

z-sa-1b-sa-0
b-sa-1

a-sa-0
a-sa-1
b-sa-0
b-sa-1

cin-sa-0
cin-sa-1

cout-sa-0
cout-sa-1

s-sa-0
s-sa-1

Fig. 7. Faulty logic gates

The model of each logic gate must contain the
description of its behavior for every possible stuck-at fault.
Stuck-at faults are related to each gates’ input or output.
Fig. 8. gives the VHDL description of the NXOR logic
gate. It is based on that in [4, 5]. All other gates and
circuits are similarly described.

4 M. SOKOLOVIĆ, A. KUIPER, GENERATION OF DIGITAL SYSTEM TEST PATTERNS BASED ON VHDL SIMULATIONS

6. Simulations and Results
Now instead of the ff components from the library,

these faulty model components are instantiated in the
modified netlist. After this modification, the resulting
circuits are simulated according to the testbench
description given in [4, 5]. In this VHDL testbench
program, a file that contains the test pattern to be analyzed
for the fault coverage, is specified.

library IEEE;
use IEEE.std_logic_1164.all;
use work.fault_inject.all;
entity EN_fault is port (
 z: out STD_LOGIC;
 a: in STD_LOGIC;
 b: in STD_LOGIC);
end EN_fault;
architecture inject_fault of EN_fault is
begin
nn: process(a,b) is
variable z_sa1, z_sa0, a_sa0, a_sa1, b_sa0, b_sa1 : fault_ptr:=null;
begin
if z_sa1=null then
z_sa1:=new fault_model'(new
string'(inject_fault'instance_name&"z_sa1"), false,false,first_fault);
first_fault:=z_sa1;
.
.
.
end if;
if z_sa1.simulating then z<='1'after 1ns;
elsif z_sa0.simulating then z<='0'after 1ns;
elsif a_sa1.simulating then z<= b after 1ns;
elsif a_sa0.simulating then z<=not b after 1ns;
elsif b_sa1.simulating then z<= a after 1ns;
elsif b_sa0.simulating then z<=not a after 1ns;
else z<=not (a xor b)after 1ns;
end if;
end process nn;
end architecture inject_fault;

Fig. 8. VHDL model of the faulty NXOR logic gate

After running this simulation a file with the correct
results is obtained as well as a file with a list of defects
covered by the test pattern. At the end of this report file,
the exact number of stack-at faults covered by the proposed
test sequence is given.

The obtained test set is now to be minimized since
one test may detect more faults.

A B Diff

000000H 000000H 000000H

FFFFFFH FFFFFFH 000000H

FFFFFFH 000000H 000000H

000000H FFFFFFH 000000H

Tab. 1. Obtained subtraction results

A M sel Diff

000000000000H 000000000000H 0 000000000000H

000000000000H 000000000000H 1 000000000000H

FFFFFFFFFFFFH FFFFFFFFFFFFH 0 000000000000H

FFFFFFFFFFFFH FFFFFFFFFFFFH 1 FFFFFFFFFFFEH

Tab. 2. Obtained adding-subtraction results

It should be mentioned that for many other different
combinational circuits, whose tests have been verified in
this way, the most covering test patterns (always covers at
least 90% of all stuck-at faults) are all zeros and all ones.

The file that gives the correct result (results.txt) of the
subtraction is shown in Table I. Part of the obtained
covering report (file faults.txt) is given in Fig. 9. Similar
results are obtained for the addition-subtraction circuit. The
results and fault coverage for this circuit are shown in
Table II and in Fig. 10. 100% fault coverage is achieved
for both examples.

:test(test):uut@oduzimacoff1_n24(netlist):
fad12_23@fa_fault(inject_fault)cin_sa1
Fault #1
Detected by input: 000000000000000000000000

111111111111111111111111 outputs: 100000000000000000000001
expected outputs: 000000000000000000000001 at 400 ns 900 ns
.
.
.
:test(test):uut@oduzimacoff1_n24(netlist):
i_18450@inv(inject_fault)z_sa1
Fault #287
Detected by input: 000000000000000000000000

111111111111111111111111 outputs: 100000000000000000000001
expected outputs: 000000000000000000000001 at 400 ns143900 ns
Undetected:
Fault cover:
287faults, 287detected

Fig. 9. Partial verification report for the subtraction circuit

:test(test):uut@oduzimacoff1_n24(netlist):
fad12_23@fa_fault(inject_fault)cin_sa1
Fault #1
Detected by input: 000000000000000000000000

111111111111111111111111 outputs: 100000000000000000000001
expected outputs: 000000000000000000000001 at 400 ns 900 ns
.
.
.
:test(test):uut@oduzimacoff1_n24(netlist):
i_18450@inv(inject_fault)z_sa1
Fault #287
Detected by input: 000000000000000000000000

111111111111111111111111 outputs: 100000000000000000000001
expected outputs: 000000000000000000000001 at 400 ns143900 ns
Undetected:
Fault cover:
287faults, 287detected

Fig. 10. Partial verification report for the adder-subtraction circuit

These two files are now to be processed in one
additional Matlab program. This program generates
minimal test set that will cover all stuck-at defects in the
circuit. One of the files obtained after this processing is
shown in Fig. 11.

Amount of faults: 287
INPUT: 000000000000000000000000 000000000000000000000000
FAULTS: 2 4 5 7 8 9 12 14 15 17 18 19 20 22 24 25 27 28 29 30 32 34 35
37 38 39 40 42 44 45 47 48 49 50 52 54 55 57 58 59 60 62 64 65 67
 . . .
INPUT: 000000000000000000000000 111111111111111111111111
FAULTS: 1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161
171 181 191 201 211 221 239
INPUT: 111111111111111111111111 000000000000000000000000
FAULTS: 10 235

POSTER 2006, PRAGUE MAY 18 5

INPUT: 111111111111111111111111 111111111111111111111111
FAULTS: 3 6 13 16 23 26 33 36 43 46 53 56 63

Fig. 11. MTS generation results

7. Conclusion
A method for minimal test pattern generation in
combinational circuits is presented in this paper. It is based
on VHDL simulations and is used and verified with
examples of two arithmetic circuits of the integrated
power-meter. Future work will extend the concept to
sequential circuits.

References

[1] BURNS, M., ROBERTS, G. An introduction to mixed-signal IC test
and measurement, Oxford University Press, New York, 2001.

[2] LITOVSKI, V. Electronic circuit design, in Serbian, Nova
Jugoslavija-Vranje, Niš, 2000.

[3] DIMITRIJEVIĆ, M., JOVANOVIĆ, B., ANĐELKOVIĆ, B.,
SOKOLOVIĆ, M. Experiences in using Cadence – the industry
standard for electronic circuit design, Proc. of the XLVII Conference
of ETRAN, Herceg Novi, 2003, Vol. 1., pp. 31-34.

[4] ZWOLINSKI, M. Digital system design with VHDL, Prentice Hall,
UK, 2004.

[5] ZWOLINSKI, M., SOKOLOVIĆ, M. Verification of digital system
test patterns using a VHDL simulator, Proceedings of the Small
Systems Simulation Symposium 2005, Niš, pp. 12-15.

About Authors...

Miljana SOKOLOVIĆ was born in Bor, Serbia and
Montenegro, in 1977. She graduated at the faculty of
Electronic Engineering, University of Niš, Serbia and
Montenegro in 2001 as the best student. During 2001, she
was working in Melexis gmbh, Germany on RF
transceivers design. She joined LEDA (Laboratory for
Electronic Design Automation) in Niš in 2001. and
received M. S. degree in 2005 at the same faculty, where
she now works as a teaching assistant and is a PhD student.
Her main research are IC design, Design for testability and
IC simulation and verification using VHDL. She received
few awards for her scientific work.

Andy KUIPER completed his studies at FH-Wiesbaden
(Germany) and was awarded his diploma in computer
science in 2002. In 2003 he was involved in a project at
Trinity College Dublin (Ireland). At present he is a PhD-
student at Brno University with main interests on
restoration of old films media.

	1. Introduction
	2. Faults in Digital Circuits
	3. Digital Circuit Testing Principles
	4. Digital System Design Flow
	5. The Approach of Minimal Test Pattern Generation
	5.1 Modeling Faulty Library Logic Gates
	6. Simulations and Results
	7. Conclusion

